Ans .
1/2
Here s={H,T} and E={H}.
P(E)=n(E)/n(S)=1/2
Ans .
3/4
Here S={HH,HT,TH,TT}
Let Ee=event of getting one head
E={TT,HT,TH}
P(E)=n(E)/n(S)=3/4
Ans .
1/3
Here S={1,2,3,4,5,6}
Let E be the event of getting the multiple of 3
then ,E={3,6}
P(E)=n(E)/n(S)=2/6=1/3
Ans .
5/12
Here n(S)=(6*6)=36
let E=event of getting a total more than 7
={(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,2),(6,3),(6,4),(6,5),(6,6)}
P(E)=n(E)/n(S)=15/36=5/12.
Ans .
7/15
.let S be the sample space
Then n(S)=no of ways of drawing 2 balls out of (6+4)=(\(_{2}^{10}\textrm{C}\)=(10*9)/(2*1)=45
Let E=event of getting both balls of same colour
Then n(E)=no of ways(2 balls out of six) or(2 balls out of 4)
=((\(_{2}^{6}\textrm{C}\)+(\(_{2}^{4}\textrm{C}\))=(6*5)/(2*1)+(4*3)/(2*1)=15+6=21
P(E)=n(E)/n(S)=21/45=7/15
Ans .
7/18
Clearly n(S)=6*6=36
Let E be the event that the sum of the numbers on the two faces is divided by
4 or 6.Then
E={(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(6,2),(6,6)}
n(E)=14.
Hence p(e)=n(e)/n(s)=14/36=7/18
Ans .
55/221
We have n(s)=52c2=(52*51)/(2*1)=1326.
Let A=event of getting both black cards
B=event of getting both queens
A\(\cap\)B=event of getting queen of black cards
n(A)= (\(_{2}^{26}\textrm{C}\)=(26*25)/(2*1)=325,
n(B)= (\(_{2}^{4}\textrm{C}\)=(4*3)/(2*1)=6 and
n(A\(\cap\)B)= (\(_{2}^{2}\textrm{C}\)=1
P(A)=n(A)/n(S)=325/1326;
P(B)=n(B)/n(S)=6/1326 and
P(A\(\cap\)B)=n(A\(\cap\)B)/n(S)=1/1326
P(A\(\cap\)B)=P(A)+P(B)-P(A\(\cap\)B)=(325+6-1/1326)=330/1326=55/221.