PROBABILITY



Ans .

1/2


  1. Explanation :

    Here s={H,T} and E={H}.

    P(E)=n(E)/n(S)=1/2





Ans .

3/4


  1. Explanation :

    Here S={HH,HT,TH,TT}

    Let Ee=event of getting one head

    E={TT,HT,TH}

    P(E)=n(E)/n(S)=3/4





Ans .

1/3


  1. Explanation :

    Here S={1,2,3,4,5,6}

    Let E be the event of getting the multiple of 3

    then ,E={3,6}

    P(E)=n(E)/n(S)=2/6=1/3





Ans .

5/12


  1. Explanation :

    Here n(S)=(6*6)=36

    let E=event of getting a total more than 7

    ={(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,2),(6,3),(6,4),(6,5),(6,6)}

    P(E)=n(E)/n(S)=15/36=5/12.





Ans .

7/15


  1. Explanation :

    .let S be the sample space

    Then n(S)=no of ways of drawing 2 balls out of (6+4)=(\(_{2}^{10}\textrm{C}\)=(10*9)/(2*1)=45

    Let E=event of getting both balls of same colour

    Then n(E)=no of ways(2 balls out of six) or(2 balls out of 4)

    =((\(_{2}^{6}\textrm{C}\)+(\(_{2}^{4}\textrm{C}\))=(6*5)/(2*1)+(4*3)/(2*1)=15+6=21

    P(E)=n(E)/n(S)=21/45=7/15





Ans .

7/18


  1. Explanation :

    Clearly n(S)=6*6=36

    Let E be the event that the sum of the numbers on the two faces is divided by

    4 or 6.Then

    E={(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(6,2),(6,6)}

    n(E)=14.

    Hence p(e)=n(e)/n(s)=14/36=7/18





Ans .

55/221


  1. Explanation :

    We have n(s)=52c2=(52*51)/(2*1)=1326.

    Let A=event of getting both black cards

    B=event of getting both queens

    A\(\cap\)B=event of getting queen of black cards

    n(A)= (\(_{2}^{26}\textrm{C}\)=(26*25)/(2*1)=325,

    n(B)= (\(_{2}^{4}\textrm{C}\)=(4*3)/(2*1)=6 and

    n(A\(\cap\)B)= (\(_{2}^{2}\textrm{C}\)=1

    P(A)=n(A)/n(S)=325/1326;

    P(B)=n(B)/n(S)=6/1326 and

    P(A\(\cap\)B)=n(A\(\cap\)B)/n(S)=1/1326

    P(A\(\cap\)B)=P(A)+P(B)-P(A\(\cap\)B)=(325+6-1/1326)=330/1326=55/221.