Ans .
8500
P= Rs.6800,R= 50/3%p.a and T =9/12years=3/4 years.
S.I=(P*R*T)/100=Rs(68,000*(50/3)*(3/4)*(1/100))=Rs.8500
Ans .
37.50
S.I. = Rs.(3,000*(25/4)*(1/5)*(1/100))= Rs.37.50.
Ans .
1625
Let sum be Rs. x then , S.I.=Rs.(x\(\frac{27}{2}\)*4*(1/100) ) = Rs.27x/50
amount = (Rs. x+\(\frac{27x}{50}\) = \(\frac{77x}{50}\)
\(\frac{77x}{50}\) = 2502.50
x = \( \frac{2502.50x50}{70}\)
= 1625 Hence , sum = Rs.1625.
Ans .
992
S.l. = Rs. (920 - 800) = Rs. 120; p = Rs. 800, T = 3 yrs.
R = (\(\frac{100 x 120}{(800*3)}\) ) % = 5%. New rate = (5 + 3)% = 8%. New S.l. = Rs. \(\frac{(800*8*3)}{100}\) = Rs. 192.
New amount = Rs.(800+192) = Rs. 992.
Ans .
12,000
Let the sum borrowed be x.
Then,\(\frac{(x*2*6)}{100}\) + /(/frac{(x*9*3)}{100}\) + \(\frac{(x*14*4)}{100}\)= 11400
(3x/25 + 27x/100 + 14x / 25) = 11400
95x/100 = 11400 ? x = (11400*100)/95 = 12000.
Hence , sum borrowed = Rs.12,000.
Ans .
208 ,13%
S.I. for 1 1/2 years = Rs.(1164-1008) = Rs.156.
S.l. for 2 years = Rs.(156*(2/3)*2)=Rs.208
Principal = Rs. (1008 - 208) = Rs. 800.
Now, P = 800, T = 2 and S.l. = 208.
Rate=(100* 208)/(800*2)% = 13
Ans .
6\(\frac{1}{4}\)% p.a
Let principal = P. Then, S.l. = P and T = 16 yrs.
Rate = (100 x P)/(P*16)% = 6\(\frac{1}{4}\)% p.a.
Ans .
6\(\frac{2}{3}\)% p.a., 6 yrs 8 months
Let sum = Rs. x. Then, S.l. = Rs. 4x/9
Let rate = R% and time = R year.
Then, (x*R*R)/100=4x/9 or \(R^2\) =400/9 or R = 20/3 = 6 2/3.
Rate = 6\(\frac{2}{3}\) % and Time = 6\(\frac{2}{3}\) = 6 years 8 months.
Ans .
800
Let the sum be Rs. x Then,\(\frac{x*10*7}{100*2}\) - \(\frac{x*12*5}{100*2}\) = 40
\(\frac{7x}{20}\)-\(\frac{3x}{10}\)=40
x = (40 * 20) = 800.
Hence, the sum is Rs. 800.
Ans .
6000
. Let sum = P and original rate = R.
Then, [ \(\frac{(P*(R+2)*3)}{100}\)]-[\(\frac{(P*R*3)}{100}\)] = 360.
3PR + 6P - 3PR = 36000
6P=36000
P=6000
Hence, sum = Rs. 6000
Ans .
325
.Let each Instalment be Rs. x
Then, ( x+ \(\frac{x*12*1}{100}\) + x\(\frac{(x*12*2)}{100}\) + x = 1092
((28x/25) + (31x/25) + x) = 1092
(28x+31x+25x)=(1092*25)
x= (1092*25)/84 = Rs.325. Each instalment = Rs. 325.
Ans .
650 ,900
Let the sum lent at 8% be Rs. x and that at 6% be Rs. (1550 - x).
\(\frac{x*8*1}{100}\) + \(\frac{(1550-x)*6*1}{100}\)=106
8x + 9300-6x=10600
2x = 1300 x = 650.
Money lent at 8% = Rs. 650. Money lent at 6% = Rs. (1550 - 650) = Rs. 900.